Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(4): 231286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577218

RESUMO

Invertebrate-derived DNA (iDNA) metabarcoding from carrion flies is a powerful, non-invasive tool that has value for assessing vertebrate diversity. However, unknowns exist around the factors that influence vertebrate detections, such as spatial limits to iDNA signals or if detections are influenced by taxonomic class or estimated biomass of the vertebrates of interest. Using a bulk-collection method, we captured flies from within a zoo and along transects extending 4 km away from this location. From 920 flies, we detected 28 vertebrate species. Of the 28 detected species, we identified 9 species kept at the zoo, 8 mammals and 1 bird, but no reptiles. iDNA detections were highly geographically localized, and only a few zoo animals were detected outside the zoo setting. However, due to the low number of detections in our dataset, we found no influence of the taxonomic group or the estimated biomass of animals on their detectability. Our data suggest that iDNA detections from bulk-collected carrion flies, at least in urban settings in Australia, are predominantly determined by geographic proximity to the sampling location. This study presents an important step in understanding how iDNA techniques can be used in biodiversity monitoring.

2.
J Acoust Soc Am ; 154(4): 2305-2320, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843381

RESUMO

Fish vocalize in association with life functions with many species calling en masse to produce choruses. Monitoring the distribution and behavior of fish choruses provides high-resolution data on fish distribution, habitat use, spawning behavior, and in some circumstances, local abundance. The purpose of this study was to use long-term passive acoustic recordings to obtain a greater understanding of the patterns and drivers of Australian fish chorus diversity at a national scale. This study detected 133 fish choruses from year-long recordings taken at 29 Australian locations with the highest fish chorus diversity identified at a site in the country's northern, tropical waters. A linear model fitted with a generalized least squares regression identified geomorphic feature type, benthic substrate type, and northness (of slope) as explanatory variables of fish chorus diversity. Geomorphic feature type was identified as the significant driver of fish chorus diversity. These results align with broad-scale patterns reported previously in fish biodiversity, fish assemblages, and fish acoustic diversity. This study has highlighted that passive acoustic monitoring of fish chorus diversity has the potential to be used as an indicator of fish biodiversity and to highlight habitats of ecological importance.


Assuntos
Ecossistema , Peixes , Animais , Austrália , Biodiversidade , Acústica
3.
J Fish Biol ; 103(6): 1312-1320, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37602957

RESUMO

The sympatric red snappers, Lutjanus erythropterus and Lutjanus malabaricus, are highly valued by commercial and recreational fishers along the tropical northern coasts of Australia and throughout their distribution. Studies on the life history and ecology of these congeners are confounded by difficulties in distinguishing the cryptic juveniles of each species (i.e., < 200 mm total length). This study aimed to validate a robust and cost-effective method to discriminate these juveniles using body and/or otolith morphometric data in a multivariate analysis. Juvenile samples were collected from the northwest (n = 71) and northeast (n = 19) coasts of Australia, and species identification was confirmed using DNA barcoding. The most parsimonious multivariate models achieved accurate species prediction rates of 98.8%, which consisted of just three body variables (dorsal fin length, the distance from the snout to the anterior edge of the eye, and either jaw length or distance from the snout to the preoperculum). The high level of discrimination for these cryptic juveniles highlights the robustness of this morphometric approach. The slightly lower rate of discrimination using otolith morphology (84.9%) was associated with greater regional variation in L. malabaricus between the northwest and northeast coasts. Slight variations in otolith shape are typically used to determine stock structure, which highlights the potential need to collect samples over a broader area of a species geographic range when using an otolith morphometric discrimination model. The method outlined in this study could be applied to distinguish other cryptic congeneric fish species, including from archived otolith collections. Moreover, this method has the potential to be utilized in assessing species compositions using body measurements from in situ stereo-video.


Assuntos
Membrana dos Otólitos , Perciformes , Animais , Membrana dos Otólitos/anatomia & histologia , Perciformes/genética , Peixes/genética , DNA , Ecologia
4.
Conserv Biol ; 37(5): e14098, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37186093

RESUMO

Severely fragmented habitats increase the risk of extirpation of native mammal populations through isolation, increased edge effects, and predation. Therefore, monitoring the movement of mammal populations through anthropogenically altered landscapes can inform conservation. We used metabarcoding of invertebrate-derived DNA (iDNA) from carrion flies (Calliphoridae and Sarcophagidae) to track mammal populations in the wheat belt of southwestern Australia, where widespread clearing for agriculture has removed most of the native perennial vegetation and replaced it with an agricultural system. We investigated whether the localization of the iDNA signal reflected the predicted distribution of 4 native species-echidna (Tachyglossus aculeatus), numbat (Myrmecobius fasciatus), woylie (Bettongia penicillata), and chuditch (Dasyurus geoffroii)-and 2 non-native, invasive mammal species-fox (Vulpes vulpes) and feral cat (Felis catus). We collected bulk iDNA samples (n = 150 samples from 3428 carrion flies) at 3 time points from 3 conservation reserves and 35 road edges between them. We detected 14 of the 40 mammal species known from the region, including our target species. Most detections of target taxa were in conservation reserves. There were a few detections from road edges. We detected foxes and feral cats throughout the study area, including all conservation reserves. There was a significant difference between the diversity (F3, 98  = 5.91, p < 0.001) and composition (F3, 43  = 1.72, p < 0.01) of taxa detections on road edges and conservation reserves. Conservation reserves hosted more native biodiversity than road edges. Our results suggest that the signals from iDNA reflect the known distribution of target mammals in this region. The development of iDNA methods shows promise for future noninvasive monitoring of mammals. With further development, iDNA metabarcoding could inform decision-making related to conservation of endangered taxa, invasive species management, and impacts of habitat fragmentation.


Caracterización genética del ADNi de la mosca carroñera para monitorear mamíferos invasores y nativos Resumen Los hábitats con mucha fragmentación aumentan el riesgo de extirpación de las poblaciones de mamíferos nativos debido al aislamiento, el aumento de los efectos de borde y la depredación. Por lo tanto, el monitoreo del movimiento de las poblaciones de mamíferos a través de paisajes alterados antropogénicamente puede guiar a la conservación. Utilizamos la caracterización genética del ADN derivado de invertebrados (ADNi) de moscas de la carroña (Calliphoridae y Sarcophagidae) para rastrear poblaciones de mamíferos en la región de Wheatbelt del suroeste de Australia, en donde la tala generalizada ha sustituido la mayor parte de la vegetación perenne nativa por un sistema agrícola. Investigamos si la localización de la señal de ADNi reflejaba la distribución prevista de cuatro especies autóctonas: equidna (Tachyglossus aculeatus), numbat (Myrmecobius fasciatus), rata canguro (Bettongia penicillata) y cuol occidental (Dasyurus geoffroii), y dos especies de mamíferos invasores no autóctonos: el zorro (Vulpes vulpes) y el gato feral (Felis catus). Recogimos muestras masivas de ADNi (n = 150 muestras de 3,428 moscas de la carroña) en tres puntos temporales de tres reservas ecológicas y 35 bordes de carreteras entre ellas. Detectamos 14 de las 40 especies de mamíferos conocidas en la región, incluidas nuestras especies objetivo. La mayoría de las detecciones de los taxones objetivo se produjeron en las reservas ecológicas. Pocas detecciones ocurrieron en los bordes de las carreteras. Detectamos zorros y gatos ferales en toda la zona de estudio, incluidas todas las reservas ecológicas. Hubo una diferencia significativa entre la diversidad (F3, 98 = 5.91, p<0.001) y la composición (F3, 43 = 1.72, p<0.01) de los taxones detectados en los bordes de las carreteras y en las reservas ecológicas. Las reservas ecológicas albergaron más biodiversidad nativa que los bordes de las carreteras. Nuestros resultados sugieren que las señales de ADNi reflejan la distribución conocida de los mamíferos objetivo en esta región. El desarrollo de métodos de ADNi es prometedor para el futuro monitoreo no invasivo de mamíferos. Con un mayor desarrollo, la caracterización genética del ADNi podría servir de base para decidir sobre la conservación de taxones amenazados, la gestión de especies invasoras y los impactos de la fragmentación del hábitat.


Assuntos
Dípteros , Gatos , Animais , Conservação dos Recursos Naturais , Mamíferos , Raposas , Biodiversidade , Ecossistema , Animais Selvagens , Espécies Introduzidas
5.
R Soc Open Sci ; 10(4): 220499, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090960

RESUMO

This study presents evidence of diel patterns in fin whale (Balaenoptera physalus) 20 Hz acoustic presence in Eastern Antarctic waters. Passive acoustic recordings were collected at four sites in Eastern Antarctica from 2013 to 2019. A generalized linear model fitted by a generalized estimating equation was used to test the hypothesis that fin whale 20 Hz acoustic presence shows significant variation between light regimes dawn, day, dusk and night. In the Indian sector of Antarctica, at the Prydz and Southern Kerguelen Plateau sites, fin whale acoustic presence was significantly more common during the night and dawn before declining during the day and dusk periods. A different diel pattern was observed in the Pacific sector, at the Dumont d'Urville site: fin whale acoustic presence was significantly more common during the day than dusk and night periods. No diel pattern was identified at the Casey site. The identified diel patterns in the Indian sector of Eastern Antarctica correlate with previously identified diel patterns of the fin whales' prey. We suggest an indirect association between fin whale acoustic presence and foraging, with the animals more likely to produce the 20 Hz pulse during the night when not foraging and less likely to vocalize when foraging during the day.

6.
Mar Environ Res ; 180: 105728, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36058087

RESUMO

We investigated the composition and abundance of fish assemblages associated with seven offshore oil and gas platform jackets in the Gulf of Thailand before (pre-lift and pre-tow), and immediately after relocation (post-tow and reefed). Jackets were cut, lifted until partly out of the water, and attached to the rear of a heavy lift vessel. They were towed at speeds of 2.7 - 3.3 knots for between 133.9 and 205.4 km before being placed on the seafloor at an artificial reef site. Sixteen species of fish were observed both before and after jacket towing. We believe these species have sought refuge in the complex structures out of the current and have remained with the jackets. Ten species of fish were observed before towing, but not after. A further seven species of fish were only observed after the jackets were relocated onto the seafloor and were assumed to be early colonisers to the structures. The paper provides empirical evidence of a much-discussed paradigm that fish can swim great distances following moved structures, and further evidence of the ability of fish to rapidly colonise reefed structures.


Assuntos
Ecossistema , Peixes , Animais
7.
Oecologia ; 200(3-4): 323-337, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098815

RESUMO

Urbanisation modifies natural landscapes resulting in built-up space that is covered by buildings or hard surfaces and managed green spaces that often substitute native plant species with exotics. Some native bee species have been able to adapt to urban environments, foraging and reproducing in these highly modified areas. However, little is known on how the foraging ecology of native bees is affected by urbanised environments, and whether impacts vary among species with different degrees of specialisation for pollen collection. Here, we aim to investigate the responses of native bee foraging behaviour to urbanisation, using DNA metabarcoding to identify the resources within nesting tubes. We targeted oligolectic (specialist) and polylectic (generalist) cavity-nesting bee species in residential gardens and remnant bushland habitats. We were able to identify 40 families, 50 genera, and 23 species of plants, including exotic species, from the contents of nesting tubes. Oligolectic bee species had higher diversity of plant pollen in their nesting tubes in residential gardens compared to bushland habitats, along with significantly different forage composition between the two habitats. This result implies a greater degree of forage flexibility for oligolectic bee species than previously thought. In contrast, the diversity and composition of plant forage in polylectic bee nesting tubes did not vary between the two habitat types. Our results suggest a complex response of cavity-nesting bees to urbanisation and support the need for additional research to understand how the shifts in foraging resources impact overall bee health.


Assuntos
Código de Barras de DNA Taxonômico , Flores , Abelhas , Animais , Flores/fisiologia , Pólen , Ecossistema , Urbanização
8.
Glob Chang Biol ; 28(7): 2296-2311, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981602

RESUMO

Extreme climatic events can reshape the functional structure of ecological communities, potentially altering ecological interactions and ecosystem functioning. While these shifts have been widely documented, evidence of their persistence and potential flow-on effects on ecosystem structure following relaxation of extreme events remains limited. Here, we investigate changes in the functional trait structure - encompassing dimensions of resource use, thermal affinity, and body size - of herbivorous fishes in a temperate reef system that experienced an extreme marine heatwave (MHW) and subsequent return to cool conditions. We quantify how changes in the trait structure modified the nature and intensity of herbivory-related functions (macroalgae, turf, and sediment removal), and explored the potential flow-on effects on the recovery dynamics of macroalgal foundation species. The trait structure of the herbivorous fish assemblage shifted as a result of the MHW, from dominance of cool-water browsing species to increased evenness in the distribution of abundance among temperate and tropical guilds supporting novel herbivory roles (i.e. scraping, cropping, and sediment sucking). Despite the abundance of tropical herbivorous fishes and intensity of herbivory-related functions declined following a period of cooling after the MHW, the underlying trait structure displayed limited recovery. Concomitantly, algal assemblages displayed a lack of recovery of the formerly dominant foundational species, the kelp Ecklonia radiata, transitioning to an alternative state dominated by turf and Sargassum spp. Our study demonstrates a legacy effect of an extreme MHW and exemplified the value of monitoring phenotypic (trait mediated) changes in the nature of core ecosystem processes to predict and adapt to the future configurations of changing reef ecosystems.


Assuntos
Herbivoria , Alga Marinha , Animais , Recifes de Corais , Ecossistema , Peixes , Florestas
9.
Conserv Biol ; 36(2): e13807, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34312893

RESUMO

Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.


Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter-ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo-BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas. Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Austrália , Tamanho Corporal , Pesqueiros , Peixes , Humanos
10.
BMJ Open Respir Res ; 8(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34326153

RESUMO

BACKGROUND: To assess the published evidence to establish the efficacy and safety of high flow oxygen cannula (HFNC) as respiratory support for children up to 24 months of age with bronchiolitis within acute hospital settings. METHODS: We searched eight databases up to March 2021. Studies including children up to 24 months of age with a diagnosis of bronchiolitis recruited to an randomised controlled trial were considered in the full meta-analysis. At least one arm of the study must include HFNC as respiratory support and report at least one of the outcomes of interest. Studies were identified and extracted by two reviewers. Data were analysed using Review Manager V.5.4. RESULTS: From 2943 article titles, 308 full articles were screened for inclusion. 23 studies met the inclusion criteria, 15 were included in the metanalyses. Four studies reported on treatment failure rates when comparing HFNC to standard oxygen therapy (SOT). Data suggests HFNC is superior to SOT (OR 0.45, 95% CI 0.36 to 0.57). Four studies reported on treatment failure rates when comparing HFNC to continuous positive airways pressure (CPAP). No significant difference was found between CPAP and HFNC (OR 1.64, 95% CI 0.96 to 2.79; p=0.07). Four studies report on adverse outcomes when comparing HFNC to SOT. No significant difference was found between HFNC & SOT (OR 1.47, 95% CI 0.54 to 3.99). CONCLUSION: HFNC is superior to SOT in terms of treatment failure and there is no significant difference between HFNC and CPAP in terms of treatment failure. The results suggest HFNC is safe to use in acute hospital settings.


Assuntos
Bronquiolite , Oxigênio , Bronquiolite/terapia , Cânula , Criança , Pressão Positiva Contínua nas Vias Aéreas , Humanos , Oxigenoterapia , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Glob Chang Biol ; 27(15): 3432-3447, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34015863

RESUMO

Marine reserves are a key tool for the conservation of marine biodiversity, yet only ~2.5% of the world's oceans are protected. The integration of marine reserves into connected networks representing all habitats has been encouraged by international agreements, yet the benefits of this design has not been tested empirically. Australia has one of the largest systems of marine reserves, providing a rare opportunity to assess how connectivity influences conservation success. An Australia-wide dataset was collected using baited remote underwater video systems deployed across a depth range from 0 to 100 m to assess the effectiveness of marine reserves for protecting teleosts subject to commercial and recreational fishing. A meta-analytical comparison of 73 fished species within 91 marine reserves found that, on average, marine reserves had 28% greater abundance and 53% greater biomass of fished species compared to adjacent areas open to fishing. However, benefits of protection were not observed across all reserves (heterogeneity), so full subsets generalized additive modelling was used to consider factors that influence marine reserve effectiveness, including distance-based and ecological metrics of connectivity among reserves. Our results suggest that increased connectivity and depth improve the aforementioned marine reserve benefits and that these factors should be considered to optimize such benefits over time. We provide important guidance on factors to consider when implementing marine reserves for the purpose of increasing the abundance and size of fished species, given the expected increase in coverage globally. We show that marine reserves that are highly protected (no-take) and designed to optimize connectivity, size and depth range can provide an effective conservation strategy for fished species in temperate and tropical waters within an overarching marine biodiversity conservation framework.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Austrália , Ecossistema , Pesqueiros , Peixes , Oceanos e Mares
12.
Sci Rep ; 11(1): 6238, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737598

RESUMO

Offshore decommissioning activities are expected to increase as oil and gas subsea infrastructure becomes obsolete. Decisions on decommissioning alternatives will benefit from quantifying and understanding the marine communities associated with these structures. As a case study, fish assemblages associated with an inshore network of subsea pipelines located on the North West shelf of Western Australia were compared to those in surrounding natural reef and soft sediment habitats using remotely operated vehicles fitted with a stereo-video system (stereo-ROVs). The number of species, the abundance, biomass, feeding guild composition and the economic value of fishes were compared among habitats. The community composition of fish associated with pipelines was distinct from those associated with natural habitats, and was characterised by a greater abundance and/or biomass of fish from higher trophic levels (e.g. piscivores, generalist carnivores and invertivores), including many species considered to be of value to commercial and recreational fishers. Biomass of fish on pipelines was, on average, 20 times greater than soft sediments, and was similar to natural reefs. However, the biomass of species considered important to fisheries recorded on the pipelines was, on average 3.5 times greater than reef and 44.5 times greater than soft sediment habitats. This study demonstrates that fish assemblages on the pipeline infrastructure exhibit high ecological and socioeconomic values.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Peixes/fisiologia , Campos de Petróleo e Gás , Animais , Biodiversidade , Biomassa , Recifes de Corais , Pesqueiros/organização & administração , Peixes/classificação , Oceanos e Mares , Austrália Ocidental
13.
Ecol Evol ; 11(24): 17873-17884, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003644

RESUMO

Seafloor characteristics can help in the prediction of fish distribution, which is required for fisheries and conservation management. Despite this, only 5%-10% of the world's seafloor has been mapped at high resolution, as it is a time-consuming and expensive process. Multibeam echo-sounders (MBES) can produce high-resolution bathymetry and a broad swath coverage of the seafloor, but require greater financial and technical resources for operation and data analysis than singlebeam echo-sounders (SBES). In contrast, SBES provide comparatively limited spatial coverage, as only a single measurement is made from directly under the vessel. Thus, producing a continuous map requires interpolation to fill gaps between transects. This study assesses the performance of demersal fish species distribution models by comparing those derived from interpolated SBES data with full-coverage MBES distribution models. A Random Forest classifier was used to model the distribution of Abalistes stellatus, Gymnocranius grandoculis, Lagocephalus sceleratus, Loxodon macrorhinus, Pristipomoides multidens, and Pristipomoides typus, with depth and depth derivatives (slope, aspect, standard deviation of depth, terrain ruggedness index, mean curvature, and topographic position index) as explanatory variables. The results indicated that distribution models for A. stellatus, G. grandoculis, L. sceleratus, and L. macrorhinus performed poorly for MBES and SBES data with area under the receiver operator curves (AUC) below 0.7. Consequently, the distribution of these species could not be predicted by seafloor characteristics produced from either echo-sounder type. Distribution models for P. multidens and P. typus performed well for MBES and the SBES data with an AUC above 0.8. Depth was the most important variable explaining the distribution of P. multidens and P. typus in both MBES and SBES models. While further research is needed, this study shows that in resource-limited scenarios, SBES can produce comparable results to MBES for use in demersal fish management and conservation.

14.
Mar Environ Res ; 162: 105198, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33130445

RESUMO

We compared and contrasted fish assemblage data sampled by baited remote underwater stereo-video systems (stereo-BRUVs) and stereo-video remotely operated vehicles (stereo-ROVs) from subsea pipelines, reef and soft sediment habitats. Stereo-BRUVs sampled greater fish diversity across all three habitats, with the stereo-ROV sampling ~46% of the same species on pipeline and reef habitats. Larger differences existed in soft sediment habitats, with stereo-BRUVs recording ~65% more species than the stereo-ROV, the majority of which were generalist carnivores. These differences were likely due to the bait used with stereo-BRUVs attracting fish from a large and unknown area. Fish may have also avoided the moving stereo-ROV, an effect possibly magnified in open soft sediment habitats. As a result of these biases, we recommend stereo-ROVs for assessing fish communities on pipelines due to their ability to capture fish in-situ and within a defined sampling area, but caution is needed over soft sediment habitats for ecological comparisons.


Assuntos
Peixes , Água , Animais , Ecossistema
15.
Sci Rep ; 9(1): 8840, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222147

RESUMO

The fin whale is a globally endangered species and is listed as threatened in Australia, however no peer-reviewed studies are available to indicate the migratory movements of the species in Australian waters. This study uses passive acoustic monitoring as a tool to identify the migratory movements of fin whales in Australian waters. Sampling was conducted from eight locations around Australia between 2009 and 2017, providing a total of 37 annual migratory records. Taken together, our observations provide evidence of fin whale migration through Australian waters, with earliest arrival of the animals recorded on the Western Australian coast, at Cape Leeuwin in April. The whales travel through Cape Leeuwin, migrating northward along the Western Australian coast to the Perth Canyon (May to October), which likely acts as a way-station for feeding. Some whales continue migrating as far north as Dampier (19°S). On Australia's east coast, at Tuncurry, fin whale seasonal presence each year occurred later, from June to late September/October. A total of only 8,024 fin whale pulses were recorded on the east coast, compared to 177,328 pulses recorded at the Perth Canyon. We suggest these differences, as well as the spatial separation between coasts, provide preliminary evidence that the fin whales present on the east and west coasts constitute separate sub-populations.


Assuntos
Acústica , Migração Animal , Baleia Comum/psicologia , Animais , Austrália , Espécies em Perigo de Extinção , Vocalização Animal
16.
PLoS Genet ; 15(2): e1007943, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30735490

RESUMO

Marine ecosystems are changing rapidly as the oceans warm and become more acidic. The physical factors and the changes to ocean chemistry that they drive can all be measured with great precision. Changes in the biological composition of communities in different ocean regions are far more challenging to measure because most biological monitoring methods focus on a limited taxonomic or size range. Environmental DNA (eDNA) analysis has the potential to solve this problem in biological oceanography, as it is capable of identifying a huge phylogenetic range of organisms to species level. Here we develop and apply a novel multi-gene molecular toolkit to eDNA isolated from bulk plankton samples collected over a five-year period from a single site. This temporal scale and level of detail is unprecedented in eDNA studies. We identified consistent seasonal assemblages of zooplankton species, which demonstrates the ability of our toolkit to audit community composition. We were also able to detect clear departures from the regular seasonal patterns that occurred during an extreme marine heatwave. The integration of eDNA analyses with existing biotic and abiotic surveys delivers a powerful new long-term approach to monitoring the health of our world's oceans in the context of a rapidly changing climate.


Assuntos
Organismos Aquáticos/genética , Biodiversidade , Mudança Climática , Ecossistema , Animais , Organismos Aquáticos/classificação , DNA/genética , DNA/isolamento & purificação , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Oceanos e Mares , Filogenia , Estações do Ano , Austrália Ocidental , Zooplâncton/classificação , Zooplâncton/genética
17.
Sci Rep ; 9(1): 748, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679714

RESUMO

Millions of people take animal pictures during wildlife interactions, yet the impacts of photographer behaviour and photographic flashes on animals are poorly understood. We investigated the pathomorphological and behavioural impacts of photographer behaviour and photographic flashes on 14 benthic fish species that are important for scuba diving tourism and aquarium displays. We ran a field study to test effects of photography on fish behaviour, and two laboratory studies that tested effects of photographic flashes on seahorse behaviour, and ocular and retinal anatomy. Our study showed that effects of photographic flashes are negligible and do not have stronger impacts than those caused solely by human presence. Photographic flashes did not cause changes in gross ocular and retinal anatomy of seahorses and did not alter feeding success. Physical manipulation of animals by photographing scuba divers, however, elicited strong stress responses. This study provides important new information to help develop efficient management strategies that reduce environmental impacts of wildlife tourism.


Assuntos
Animais Selvagens/fisiologia , Conservação dos Recursos Naturais , Peixes/fisiologia , Fotografação , Animais , Animais Selvagens/anatomia & histologia , Mergulho , Humanos
18.
J Environ Manage ; 218: 14-22, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29660542

RESUMO

Scuba diving tourism is a sustainable source of income for many coastal communities, but can have negative environmental impacts if not managed effectively. Diving on soft sediment habitats, typically referred to as 'muck diving', is a growing multi-million dollar industry with a strong focus on photographing cryptobenthic fauna. We assessed how the environmental impacts of scuba divers are affected by the activity they are engaged in while diving and the habitat they dive in. To do this, we observed 66 divers on coral reefs and soft sediment habitats in Indonesia and the Philippines. We found diver activity, specifically interacting with and photographing fauna, causes greater environmental disturbances than effects caused by certification level, gender, dive experience or age. Divers touched the substrate more often while diving on soft sediment habitats than on coral reefs, but this did not result in greater environmental damage on soft sediment sites. Divers had a higher impact on the substrate and touch animals more frequently when observing or photographing cryptobenthic fauna. When using dSLR-cameras, divers spent up to five times longer interacting with fauna. With the unknown, long-term impacts on cryptobenthic fauna or soft sediment habitats, and the increasing popularity of underwater photography, we argue for the introduction of a muck diving code of conduct.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Fotografação , Animais , Antozoários , Mergulho , Indonésia , Filipinas
19.
Ecol Appl ; 27(6): 1776-1788, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28452413

RESUMO

Niche requirements and habitat resource partitioning by conspecific fishes of different sizes are significant knowledge gaps in the species distribution modelling domain. Management actions and operations are typically concentrated on static habitats, or specific areas of interest, without considering movement patterns of species associated with ontogenetic shifts in habitat usage. Generalized additive models were used to model the body-length-habitat relationships of six fish species. These models were used to identify subsets of environmental parameters that drive and explain the continuous length-habitat relationships for each of the study species, which vary in their degree of ecological and/or commercial importance. Continuous predictive maps of the length distributions for each of the six study species across approximately 200 km2 of the study area were created from these models. The spatial patterns in habitat partitioning by individuals of different body lengths for all six study species provide strong evidence for ontogenetic shifts. This highlights the importance of considering ontogenetic processes for marine spatial management. Importantly, predictive hotspot maps were created that identify potential areas that accumulate individuals of similar life stages of multiple species (e.g., multispecies nursery areas). In circumstances where limited resources are available for monitoring and management of fish resources, predictive modelling is a valuable tool for studying previously overlooked processes such as ontogenetic habitat shifts. Predictive modelling provides crucial information that elucidates spatial patterns in community composition across mosaics of benthic habitats. This novel technique can contribute to the spatial management of coastal fish and fisheries by identifying areas that are important for different life history stages of multiple fish species.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Pesqueiros , Peixes/fisiologia , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/fisiologia , Tamanho Corporal , Peixes/crescimento & desenvolvimento , Oceano Índico , Austrália Ocidental
20.
Science ; 353(6295): 169-72, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27387951

RESUMO

Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.


Assuntos
Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Extinção Biológica , Kelp/fisiologia , Clima Tropical , Animais , Austrália , Peixes , Água do Mar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA